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Abstract: Midlife hypercholesterolemia is a well-known risk factor for sporadic Alzheimer’s disease
(AD), and like AD, it is highly influenced by genetics with heritability estimates of 32–63%. We thus
hypothesized that genetics underlying peripheral blood total cholesterol (TC) levels could influence
the risk of developing AD. We created a weighted polygenic score (TC-PGS) using summary data
from a meta-analysis of TC genome-wide association studies for evaluation in three independent
AD-related cohorts spanning pre-clinical, clinical, and pathophysiologically proved AD. APOE-ε4
variant was purposely included in the analysis as it represents an already well-established genetic
risk factor for both AD and circulating TC. We could vastly improve the performance of the score
when considering p-value thresholds for inclusion in the score, sex, and statin use. This optimized
score (p-value threshold of 1 × 10−6 for inclusion in the score) explained 18.2% of the variance in
TC levels in statin free females compared to 6.9% in the entire sample and improved prediction
of hypercholesterolemia (receiver operator characteristics analysis revealed area under the curve
increase from 70.8% to 80.5%). The TC-PGS was further evaluated for association with AD risk and
pathology. We found no association between the TC-PGS and either of the AD hallmark pathologies,
assessed by cerebrospinal fluid levels of Aβ-42, p-Tau, and t-Tau, and 18F-NAV4694 and 18F-AV-1451
positron emission tomography. Similarly, we found no association with the risk of developing
amyloid pathology or becoming cognitively impaired in individuals with amyloid pathology.

Keywords: polygenic score; Alzheimer’s disease; cholesterol; amyloid; tau protein; aging

1. Introduction

Alzheimer’s disease (AD), dementia, and cognitive impairment are multifactorial in
nature, whose cause and progression are typically influenced by a combination of risk
factors such as old age, genetics, and lifestyle factors [1]. Approximately half of the AD
phenotypic variance is explained by genetics; however, most of the genetic variants are
unidentified [2], as is the mechanism by which they act.
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One of the suggested lifestyle factors involved in AD is the level of blood total choles-
terol (TC) [1], as well as LDL content. For example, several studies have shown that
high TC levels, specifically in midlife, are associated with an increased risk of developing
AD [3–8], yet others have shown little or no association [9–11]. Moreover, higher circulating
cholesterol levels (TC or LDL cholesterol) have been associated with increased amyloid
load [12–14] and hypometabolism in brain regions affected by AD [3]. Late-life TC levels
have also been examined, but again with contradictory results. In a study with nursing
home residents, levels of blood TC were found to be significantly increased in patho-
logically defined AD patients, compared to individuals free from AD pathology [15,16].
Similarly, when compared to non-demented subjects with atherosclerotic heart disease,
TC levels were found to be increased in individuals with possible clinical or probable
AD [17]. Contrary to these findings, one study found that TC levels were decreased in AD
individuals compared to controls [18].

A factor that could partly explain these variable results is the fact that AD is a clin-
icopathological construct [19], and a clinical diagnosis of probable AD has a sensitivity
of 81% and a specificity of 70% to predict definite AD (pathophysiologically proven) [20].
This has very recently led to a proposal of new guidelines for the definition of AD in
research settings by the NIA-AA Research Framework [21]. These guidelines propose
that, for research purposes, AD should be defined as a biological construct determined by
the presence of pathology as assessed with the *A/T/N* classification system, depending
on levels of amyloid-β (Aβ, A), phosphorylated TAU (p-Tau, T) and neurodegeneration
(N) [22]. When pathology data is not available, proxies of the aforementioned pathologies
have been developed using cerebrospinal fluid (CSF) or positron emission tomography
(PET) measurements. Of note, this biological definition was proposed to also work with
current clinical diagnoses of AD; e.g., AD neuropathological change with or without ac-
companying cognitive decline. In this study, we have used the *A/T/N* framework to
define participants according to their neuropathological status and to refine their clinical
statuses (healthy or AD).

Similar to AD, TC levels are also markedly influenced by genetics [23–25]. For example,
heritability is estimated to be 58–79% for AD [26] and 32–63% for TC [27]. Considering the
genetic background of both conditions and the fact that they are linked in terms of risk,
it is possible that some of the genetic variance seen in AD can be explained by variants
influencing blood cholesterol levels. The best example is the APOE-E4 allele, which serves
both as a very significant risk factor of sporadic AD as well as a potent modulator of TC in
the blood.

Along these lines, an early study did investigate the effect of a TC polygenic score
(TC-PGS) in AD but failed to reveal any significant effects [28]. However, only patients with
clinically defined AD were investigated in this paper. In addition, scores were based only on
genome-wide significant single nucleotide polymorphisms (SNPs) compared to performing
an evaluation of the best p-value cut-off, and the polygenic score only explained a small
portion of the variance (3.6%) in cholesterol levels. It is thus possible that the inclusion of
low effect loci in the score and using the new classification system for AD could reveal
important associations.

The aims of this study were to first examine multiple TC-PGSs to determine the
effect of inclusion of low effect loci and, at the same time, evaluate the influence of factors
such as sex and statin use. Secondly, after determining the score with the best prediction,
we aimed at investigating the TC-PGS in the context of AD as a biological construct,
examining associations with the *A/T/N* pathologies and cognition in individuals with
AD pathology.

We show, using three different AD-related cohorts that cover the pre-symptomatic to
the symptomatic end-stage of the disease, that despite creating an improved TC-PGS, no
associations with either pathology or cognition could be detected.
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2. Materials and Methods
2.1. The Meta-Analysis Summary Data

Summary statistic data from the Global Lipids Genetics Consortium’s meta-analysis
(GLGC) of TC GWAS’s [24] was downloaded from csg.sph.umich.edu/willer/public/
lipids2013/ (downloaded on 21 June 2018). Results from the joint analysis of metabochip
and GWAS data were used. Before being used for scoring, ambiguous SNPs were excluded,
and only SNPs present in all three target data sets were kept. The details of this data
set are described elsewhere [24]. Briefly, this data are based on 63 blood total cholesterol
genome-wide association studies (GWAS’s) for a total of 114,230 individuals [24]. 48 vs.
15 studies were of European and non-European ancestry, respectively. The ratio of women
in these studies ranged from 0 to 76.8%, and the mean age in the studies ranged from 16
to 75 years. Most studies investigated individuals free of lipid-lowering drugs (44/63)
and the majority of studies had a fasting regime before cholesterol measurements (51/63).
Raw data contained 2,446,981 SNPs, whereof 15.4% were ambiguous. These were excluded
resulting in a data set with 2,069,037 SNPs.

2.2. Study Populations
2.2.1. PREVENT-AD

The Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer’s
Disease (PREVENT-AD, openpreventad.loris.ca/, accessed on 26 January 2018) cohort,
based at the Centre for Studies on the Prevention of AD in Montreal, Canada (StoP-AD,
douglas.research.mcgill.ca/stop-ad-centre, accessed on 26 January 2018), is a longitudinal
study of older, healthy individuals (55+) with a parental or multiple-sibling history of
AD [29]. Data for all variables were obtained from data release 5.0 (30 November 2017)
except for APOE genotype, PET, and genetic data. For these variables, the latest available
data at the center was used to be included in future data releases. Each participant and
study partner provided written informed consent. All procedures were approved by the
McGill University Faculty of Medicine Institutional Review Board and complied with
the ethical principles of the Declaration of Helsinki. In this cohort, 382 individuals were
genotyped and selected for evaluation. Of these, 41 were excluded during quality control
procedures and 35 were excluded due to lack of data for covariates and target phenotypes,
resulting in a final data set of 306 individuals.

2.2.2. ADNI

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu, accessed on 3 December 2015). The ADNI was launched in 2003 as a
public-private partnership led by Principal Investigator Michael W. Weiner, MD in the US.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging,
PET, other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. For up-to-date information,
see www.adni-info.org (accessed on 3 December 2015). For this study, a subset of ADNI
consisting of individuals with genetic data and a family history of AD (first-degree relative
affected) was used. All data, but the CSF data, which were downloaded on 22 June 2018,
were downloaded on 3 December 2015. The final data set, after quality control and merging
of data (see below; Genetic data—Merging of ADNI data), contained 1065 individuals.
These were further filtered for having a family history of AD, resulting in a data set of
401 individuals.

2.2.3. ROSMAP

ROSMAP consists of two longitudinal clinical–pathologic cohort studies of aging and
AD from the Rush Alzheimer’s Disease Center in the US (www.radc.rush.edu/, accessed
on 28 May 2019) [30]. In this study, a subset containing individuals with genetic and
pathology data was used. Briefly, 1081 individuals passed genomic quality control steps

csg.sph.umich.edu/willer/public/lipids2013/
csg.sph.umich.edu/willer/public/lipids2013/
openpreventad.loris.ca/
douglas.research.mcgill.ca/stop-ad-centre
douglas.research.mcgill.ca/stop-ad-centre
adni.loni.usc.edu
www.adni-info.org
www.radc.rush.edu/
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and were used for scoring. Of these, 547 had phenotype data and were thus selected for
the final data set.

2.3. Genetic Data
2.3.1. Quality Control

QC procedures [31] for the genetic data was done similarly for all cohorts and were
performed in PLINK v1.9 [32,33] as follows: heterozygous haploid genotypes excluded,
sex check, relatives excluded (identity by descent > 0.1875), sample and genotyping call
rate > 0.95, minor allele frequency > 0.05, and Hardy–Weinberg equilibrium < 1 × 10−6.
SNPs were then matched with the GRCh37 genome (www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.13/#/st, accessed on 28 May 2019). A principal component analysis with
1000 Genomes phase 3 data as a reference [34,35] was performed to determine ancestry and
filter for individuals with European ancestry. Briefly, long-range linkage disequilibrium
regions and ambiguous SNPs were first excluded from 1000 Genomes data and then
merged with target cohort genetic data. Any ambiguous SNPs from target data were then
excluded. Merged data were pruned with a sliding window of 2000 bp with a step size of
200 bp, excluding SNPs with an R2 > 0.2 (–indep-pairwise 2000 200 0.2), and PCs calculated
(–pca) in PLINK [32,33]. Averages and standard deviations of PC1 and PC2 for Europeans
in 1000 Genomes were determined, and target cohort individuals were determined to be of
European ancestry if their PC1 and 2 fell within ± 3 SD of the 1000 Genomes cohort means.
PCs were then calculated again within the European target cohorts to include as covariates
in subsequent analyses.

2.3.2. Imputation

PREVENT-AD, a subset of ADNI (“ADNI 1 GWAS” data set, see below), and ROSMAP
data were imputed using the Sanger Imputation Service [36] (imputation.sanger.ac.uk/,
accessed on 3 December 2015). Briefly, quality-controlled genetic data was uploaded
and pre-phased with SHAPEIT2 [37] and imputed with positional Burrows–Wheeler
transform [38] using the 1000 Genomes cohort [34,35] as a reference panel. Only post-
imputed SNPs with an info score greater than 0.7 were kept (similar to [39]) to balance the
quantity of excluded data (14% in [39]) with data quality.

2.3.3. Merging ADNI Data

Two genomic data sets were used for ADNI; the “ADNI 1 GWAS” data set genotyped
using the Illumina Human610-Quad BeadChip, and the “ADNI WGS” data set genotyped
using a whole-genome sequencing platform. Before merging, both data sets were quality
controlled and “ADNI 1 GWAS” data was imputed. Some individuals were present in both
data sets, in which case data from the “ADNI WGS” data set was used. The merged genetic
data set contained 6,164,853 SNPs and 1065 individuals.

2.4. TC-PGS

Polygenic scoring was done with PLINK [32,33]. Using the PREVENT-AD cohort,
SNPs were clumped with a sliding window of 250 kbp and filtering all SNPs with a
linkage disequilibrium R2-value > 0.1 (–clump). Multiple weighted PGS’s (using summary
statistics β-values) were then calculated (–score) at various p-value cut-offs (1 × 10−100,
1 × 10−50, 1 × 10−40, 1 × 10−30, 1 × 10−20, 1 × 10−10, 1 × 10−8, 1 × 10−7, 1 × 10−6,
1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 0.05, 0.1, 0.5, and 1).

2.5. TC and Hypercholesterolemia Measurements

In PREVENT-AD, TC levels were assessed in plasma drawn from non-fasting indi-
viduals at the eligibility visit (i.e., before baseline measurements). In ADNI, TC levels
were assessed in whole blood drawn at the screening visit from fasting individuals. ADNI
TC measurements were transformed from mg/dL to mM to match the PREVENT-AD
data by dividing values with 38.67. ROSMAP was not used for blood TC analyses. A

www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/#/st
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/#/st
imputation.sanger.ac.uk/
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hypercholesterolemia variable was created for PREVENT-AD and ADNI, by assuming that
all individuals on statins and all non-treated individuals with TC levels > 6.2 mM were
hypercholesterolemic [4].

2.6. CSF Measurements

In both PREVENT-AD and ADNI, CSF was obtained by lumbar puncture following
an overnight fast. Levels of Aβ-42, p-Tau, and t-Tau were measured by the Innotest®

ELISA (enzyme-linked immunosorbent assays, Fujirebio) [40] and the Roche Elecsys CSF
immunoassays (data file UPENNBIOMK9_04_19_17.csv) [41,42], for PREVENT-AD and
ADNI, respectively. Of note, the Elecsys Aβ-42 CSF immunoassay is currently under devel-
opment for investigational use only and has an upper technical limit of 1700 pg/mL. Values
above this limit are based on extrapolation of the calibration curve, and the performance
of these values has not been formally established. These are still included in this study.
In PREVENT-AD, Aβ-40 levels were further assessed by the MSD® MULTI-SPOT Assay
System (V-PLEX Plus Aβ Peptide Panel 1 (6E10) Kit, MesoScale, Rockville, USA).

2.7. PET Imaging

PET scans were performed in PREVENT-AD using fluorine 18-labeled NAV4694 and
AV-1451 (Flortaucipir, Montréal, Canada) to estimate the deposition of Aβ and TAU in the
brain, respectively. Standardized uptake value ratios (SUVR) were computed by dividing
tracer uptake by cerebellar gray matter uptake (Aβ) or by inferior cerebellar gray matter
uptake (TAU). For details on PET procedures, see [13].

2.8. Amyloid Positivity Status

According to the recently proposed biological definition of AD, we categorized in-
dividuals as on or off the AD spectrum by the presence of amyloid pathology in the
brain [21,22]. In PREVENT-AD, individuals were split into amyloid negative (Aβ(−)) and
positive (Aβ(+)) status based on Aβ PET values (Aβ(+) defined as SUVR > 1.37), similar to
McSweeney and colleagues [43]. In ADNI, we used the CSF p-Tau/Aβ-42 ratio as a proxy
for brain amyloid pathology, as described by Hansson et al., [44]. Briefly, the CSF values
were extracted from the last available visit for each individual, and a ratio ≥ 0.028 was
considered as Aβ(+) and thus on the AD spectrum, whereas a lower ratio was considered
Aβ(−). In ROSMAP, semiquantitative estimates of post-mortem neuritic plaque density as
recommended by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD
score) were used to define Aβ(+) individuals. This is a four-point scale, and individuals,
where scores three or four were considered Aβ(+).

2.9. Statistical Analyses

All statistical analyses were performed in R [45]. Data was handled with the “data.frame” [46]
and “tidyverse” [47] packages and plotted with the “cowplot” [48] package. For a full list
of data sets, software, and r packages used, and their respective links, see Supplementary
Table S1. Values are reported as mean ± standard error or the mean (SE) if not otherwise
stated.

2.9.1. Descriptive

Differences in cohort characteristics, such as age, sex, and TC levels, were analyzed
with either a Welch two-sample t-test (comparing two cohorts) or an ANOVA (comparing
the three cohorts) for continuous variables and with Pearson’s chi-square test for categorical
variables. Post-hoc analysis was performed if primary analyses were significant, and
comparisons were between all three cohorts. Here, Tukey HSD was used for continuous
variables and post-hoc chi-square test was used for categorical variables. R package
“psych” [49] was used to compute summary statistics.
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2.9.2. TC Levels and p-Value Thresholding

The relationship between each score and blood TC levels was evaluated with a lin-
ear regression with genetic PCs 1–10, age, age2, APOE-ε4 status, sex, and statin use as
covariates. Additional R2 explained were calculated as the difference in R2 between a
model containing only the covariates and a model containing covariates and the TC-PGS.
Standard deviations at each cut-off were determined by bootstrapping (n iterations = 5000)
using the R package “boot” [50,51] and R2-values were calculated using the “rcompanion”
package [52]. Effects of statin use and sex on the relationship between the TC-PGS and
TC levels were assessed by stratification, first by statin use and then by sex (in statin-free
individuals). The TC-PGS that explained most of the variance were selected for further
analyses in all three cohorts with interactions terms for sex and statin use when sample
sizes allowed.

2.9.3. Hypercholesterolemia ROC Analyses

Discrimination of hypercholesterolemic from healthy individuals was evaluated by
ROC curve analysis and quantified by the AUC using the “pROC” package [53]. Data were
stratified for sex, and the difference between a model containing the covariates (PCs 1–10,
age, and age2) and a model containing covariates plus the TC-PGS was evaluated with
DeLong’s test.

2.9.4. CSF and PET Linear Regression Analyses

Each dependent variable was examined for distribution patterns and transformed if
not normally distributed and analyzed with multiple linear regression. In PREVENT-AD,
models were corrected for genetic PCs 1–10, age, APOE-ε4 status, statin use, and run with a
sex*TC-PGS interaction term. In ADNI, the same covariates were used except for statin that
was included in the interaction term (statin*sex*TC-PGS). Aβ PET data were not normally
distributed, even after transformation, and individuals were therefore analyzed both with
a robust regression (same model as above) and by linear regressions after stratifying for
Aβ(+) status. The Aβ(−) group had a sufficient sample size to be analyzed with the
aforementioned model (n = 80), whereas the sample size of the Aβ(+) group was too small
to run the same regression (n = 18). Thus, the regression was run with age, APOE-ε4 status,
statin use, and sex as covariates and only investigated the main effect of the TC-PGS.

2.9.5. Risk of AD and Cognitive Impairment Logistic Regression Analyses

We evaluated whether the TC-PGS associated with the risk of ending up on the AD
spectrum is defined as being Aβ(+) by logistic regression. Cognition was analyzed in
ADNI and ROSMAP, and these analyses were limited to Aβ(+) individuals to investigate
individuals on the AD spectrum only. In both ROSMAP and ADNI, CI was defined as
having a clinical diagnosis of either MCI, AD, or other dementia. Risks between the TC-PGS
and both Aβ(+) status and CI were evaluated by multiple logistic regressions. All models
were corrected for genetic PCs 1–10, age, and APOE-ε4 status. In PREVENT-AD, statin use
was further included as a covariate, and the model was run with a sex*TC-PGS interaction
while statin use was included in the interaction term in ADNI. Similar models were used
in ROSMAP but without the statin factor as this data were not available.

2.9.6. Conversion Rate

The effect of TC-PGS on conversion rate in ADNI and age of onset in ROSMAP was
evaluated with Kaplan–Meier survival analysis [54]. Before filtering, the TC-PGS was
categorized into tertiles (i.e., low, medium, and high TC-PGS). In ADNI, individuals that
were Aβ(+) with either no CI or with an MCI diagnosis at baseline were selected. Follow-up
time ranged from three to 120 months. Conversion was defined as developing a clinical
diagnosis of AD. In ROSMAP, Aβ(+) individuals were selected, and the conversion was
defined as receiving a clinical diagnosis of either possible or probable AD. A larger sample
size in ROSMAP allowed for stratification on sex. Analyses were done using the “survival”
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package [55,56], the “ggfortify” package [57,58] were used for plotting and the “survminer”
package [59] was used for creating survival tables.

3. Results
3.1. Cohort Characteristics

Three AD-related target cohorts were evaluated in this study: the Pre-symptomatic
Evaluation of Experimental or Novel Treatments for Alzheimer’s Disease (PREVENT-AD,
n = 306) [29], Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 401), and Religious
Orders Study and Rush Memory and Aging Project (ROSMAP, n = 547) [30]. They differed
in their percentages of females (70, 48, and 71%, respectively; p = 4.9 × 10−14), apolipopro-
tein E ε4 allele carriers (APOE-ε4, 37, 57, and 24%, respectively; p = 1.5 × 10−23) and statin-
treated individuals (23 and 51% for PREVENT-AD and ADNI, respectively; p = 3.8 × 10−13,
Table 1). Post-hoc analyses revealed that the proportion of females was higher in PREVENT-
AD and ROSMAP compared to ADNI (p’s ≤ 1.0 × 10−8) and that the proportion of APOE-
ε4 carriers was significantly different between all cohorts (p’s ≤ 5.0 × 10−7). Age was
recorded at the different assessments (blood, CSF, PET, amyloid positivity (Aβ(+)) status
and cognition), was different between the cohorts in all instances, and were significantly
higher in PREVENT-AD (5.42 ± 0.06 mM and 5.09 ± 0.06 mM, respectively, p = 9.3 × 10−5).

Table 1. Cohort characteristics.

PREVENT-AD ADNI ROSMAP

Variable N Mean (SE) N Mean (SE) N Mean (SE) p-Value

Females [%] 306 69.9 (2.6) 401 47.9 (2.5) 547 71.1 (1.9) <0.001 a

APOE-ε4 carriers
[%] 302 37.1 (2.8) 401 56.9 (2.5) 546 24.2 (1.8) <0.001 a

Age [years] # 264 63.33 (0.42) 401 72.79 (0.35) 547 88.42 (0.13) <0.001 b

Statin treated [%] 299 23.4 (2.5) 360 51.4 (2.6) NA NA <0.001 a

TC
measurements

Age @ blood
collection 287 63.15 (0.3) 355 72.63 (0.37) NA NA <0.001 c

TC [mM] 287 5.42 (0.06) 355 5.09 (0.06) NA NA <0.001 c

CSF
measurements

Age @ CSF
collection 86 62.87 (0.59) 302 72.19 (0.41) NA NA <0.001 c

Aβ-42 [pg/ml] 83 1160.31
(31.08) 301 1053.78

(37.17) NA NA 0.029 c

Aβ-40 [pg/ml] 75 6132.53
(222.57) NA NA NA NA NA

p-Tau [pg/ml] 86 47.31 (1.89) 302 28.03 (0.76) NA NA <0.001 c

t-Tau [pg/ml] 86 275.23
(13.87) 302 291.45

(6.95) NA NA 0.298 c

PET
measurements

Age @ Aβ PET
[years] 98 67.62 (0.49) NA NA NA NA NA

Aβ PET [SUVR] 98 1.33 (0.04) NA NA NA NA NA
Age @ TAU PET

[years] 100 70.79 (0.56) NA NA NA NA NA

TAU PET [SUVR] 100 1.07 (0.01) NA NA NA NA NA
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Table 1. Cont.

PREVENT-AD ADNI ROSMAP

Variable N Mean (SE) N Mean (SE) N Mean (SE) p-Value

Aβ(+)

Age @
assessment

[years]
98 67.62 (0.49) 271 74.22 (0.45) 535 88.38 (0.13) <0.001 b

Aβ(+) [%] 98 18.4 (0.04) 271 54.2 (3.0) 535 74.6 (1.9) <0.001 a

Cognition

Age @
assessment

[years]
NA NA 139 76.62 (0.63) 399 88.5 (0.15) <0.001 c

CI [%] NA NA 139 90.6 (2.5) 399 76.9 (2.1) <0.001 a

Abbreviations: Aβ, amyloid-β; CI, cognitively impaired; CSF, cerebrospinal fluid; p-Tau, phosphorylated TAU;
PET, positron emission tomography; SE, standard error of the mean; SUVR, standardized uptake value ratio; TC,
total cholesterol. # Mean age was calculated for baseline in PREVENT-AD and ADNI, and for age of death in
ROSMAP. a Calculated with χ2 test. b Calculated with ANOVA. c Calculated with Welch two sample t-test.

Global Lipids Genetics Consortium

Summary data were matched with the target cohorts. After matching, the proportion
of non-ambiguous SNPs present in each cohort was 86.4, 89.7 and 91.3% for PREVENT-AD,
ADNI and ROSMAP, respectively. After filtering SNPs not present in all the data sets,
1,653,356 SNPs remained, representing 67.6% of the original number of summary data
SNPs (see Supplementary Figure S1 for Manhattan plots of included and excluded SNPs).

3.2. Amount of Variance Explained in TC Blood Levels by TC-PGS

To establish a TC-PGS that best associates with blood TC levels, various p-value cut-
offs were investigated in the PREVENT-AD and ADNI cohorts (Figure 1). The different
scores were first evaluated in all individuals, correcting for covariates as well as statin
use and sex (Figure 1, left-hand panel, circles). At best, the TC-PGS explained 6.9% of the
variance in PREVENT-AD (p = 2.93 × 10−8, p-value cut-off 1 × 10−6) and 4.1% in ADNI
(p = 7.1 × 10−6, p-value cut-off 0.01). Stratification on statin use (Figure 1, left-hand panel,
triangles) revealed strong associations in statin free individuals in both cohorts, increasing
the variance explained to 13.5% in PREVENT-AD (p = 2.83 × 10−9, p-value cut-off 1 × 10−6)
and 7.1% in ADNI (p = 1.4 × 10−4, p-value cut-off 1 × 10−7). In contrast, the scores in
general performed poorly in statin users with none of the scores significantly associated
with TC levels in PREVENT-AD (p’s ≥ 0.412) and the best score in ADNI explaining 5.2%
of the variance (p = 7.2 × 10−4, p-value cut-off 1 × 10−30).

Statin free individuals were further stratified on sex (Figure 1, right-hand panel,
squares and diamonds), revealing a highly significant effect in females; at best, the TC-
PGS explained 19.0% of the variance in PREVENT-AD (p = 6.70 × 10−9, p-value cut-off
1 × 10−10) and 13.1% of the variance in ADNI (p = 9.6 × 10−4, p-value cut-off 1 × 10−7).

In either cohort, no association between TC-PGS’s and TC levels could be found in
statin-free males (p’s > 0.05). Based on its performance in the younger, combined PREVENT-
AD cohort, the TC-PGS with a p-value cut-off of 1 × 10−6 were selected for further analyses
and will from hereon be referred to solely as the “TC-PGS”.
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Figure 1. Variance explained by TC-PGS on TC levels over multiple p-value cut-offs. Multiple
p-value thresholds were evaluated for association with TC levels in PREVENT-AD (upper panel) and
ADNI (lower panel) stratified for statin use (left-hand panel) and sex (right-hand panel) using linear
regression corrected for PCs 1–10, APOE-ε4 status, age, and age2. Statin use and sex were included
when not stratified for. Plotted is additional variance explained (regression R2) after adding the
TC-PGS to the model. Abbreviations: TC-PGS, total cholesterol polygenic score; TC, total cholesterol.

3.3. TC-PGS Predicts Hypercholesterolemia

Next, we examined the TC-PGS’s ability to predict hypercholesterolemia in PREVENT-
AD and ADNI (Figure 2). Receiver operator characteristics (ROC) curve analysis in
PREVENT-AD revealed a significant improvement in hypercholesterolemia prediction
in females with the addition of the TC-PGS to the model (area under the curve (AUC)
increase from 70.8 to 80.5%, p = 0.0042) but no effect in males (AUC 74.0 vs. 74.1% in model
without and with TC-PGS, respectively, p = 0.91). In ADNI, although adding the TC-PGS
increased the AUC values for both females (65.2 vs. 71.3%, p = 0.14) and males (65.3 vs.
70.7%, p = 0.087), these increases did not reach significance.

3.4. TC-PGS Does Not Associate with Amyloid Pathology

The effect of TC-PGS on Aβ pathology was assessed in PREVENT-AD and ADNI
(Figure 3). In PREVENT-AD, linear regressions correcting for covariates and with a sex*TC-
PGS interaction term revealed no effect of the TC-PGS, either as part of the interaction term
or as a main effect, on CSF Aβ-42 (tmain(16, 66) = −0.172, pmain = 0.864; tint(16, 66) = 0.269,
pint = 0.788), or its ratio with Aβ-40 (tmain(16, 58) = −0.271, pmain = 0.787; tint(16, 58) = 0.024,
pint = 0.981). Similarly, in ADNI no significant effect of TC-PGS could be detected on CSF
Aβ-42, neither as a main effect nor as part of any of the interaction terms (sex*TC-PGS,
statin*TC-PGS, statin*sex*TC-PGS (−0.869 ≤ t’s(19, 250) ≤ 0.663, p’s ≥ 0.371). Further, the
effect of TC-PGS was evaluated on Aβ pathology assessed by PET in PREVENT-AD. Due
to not being normally distributed, the data was analyzed with a robust regression and by
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linear regression after stratifying for Aβ(+) status. We found no effect of the TC-PGS in
the combined cohort or after stratification on Aβ(+) status (combined: tmain(16, 80) = 0.898,
pmain = 0.510, tint(16, 80) = −0.717, pint = 0.703; Aβ(−): tmain(16, 63) = 1.095, pmain = 0.278;
tint(16, 63) = −0.672, pint = 0.504; Aβ(+): t(5, 11) = −0.213, p = 0.8351).
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Figure 2. Effect of TC-PGS on prediction of hypercholesterolemia. ROC curves showing the effect
of covariates and TC-PGS on predicting hypercholesterolemia in (A) PREVENT-AD and (B) ADNI,
stratified for sex. Individuals were deemed hypercholesterolemic if they were on statins or TC levels
> 6.2 mM (i.e., 240 mg/dL). Covariates included were genetic PCs 1–10, age, and age2. * p < 0.05,
• p < 0.1. Abbreviations: AUC, area under the curve; F, females; M, males; PC, genetic principal
component; ROC, receiver operator characteristics; TC-PGS, total cholesterol polygenic score.

3.5. TC-PGS Does Not Associate with TAU Pathology

The TC-PGS was evaluated for associations with biomarkers of TAU pathology in
PREVENT-AD (CSF and PET) and ADNI (CSF, Figure 4). In PREVENT-AD, linear regres-
sions corrected for covariates and with a sex*TC-PGS interaction revealed no associations
between TC-PGS and biomarkers of TAU pathology as assessed by CSF p-Tau (tmain(16,
69) = 0.641, pmain = 0.523; tint(16, 69) = −0.069, pint = 0.946), CSF p-Tau/total TAU (t-Tau)
ratio (tmain(16, 69) = −0.919, pmain = 0.3614; tint(16, 69) = 0.819, pint = 0.4155) and TAU
PET (tmain(16, 83) = −1.279, pmain = 0.204; tint(16, 83) = 1.641, pint = 0.105). Similarly, in
ADNI, we found no significant associations between the TC-PGS and TAU pathology as
assessed by CSF p-Tau (−1.212 ≤ ts(19, 251) ≤ 1.247, p’s ≥ 0.214) and its ratio with t-Tau
(−0.599 ≤ t’s(19, 251) ≤ 0.123, p’s ≥ 0.550).

3.6. TC-PGS Does Not Associate with Markers of Neurodegeneration

The TC-PGS was evaluated for associations with biomarkers of neurodegeneration
in PREVENT-AD and ADNI by measuring levels of CSF t-Tau (Figure 5). We found no
evidence for an association of the TC-PGS with CSF t-Tau in neither PREVENT-AD (tmain(16,
69) = 0.758, pmain = 0.451; tint(16, 69) = −0.111, pint = 0.912) nor ADNI (−1.393 ≤ t’s(19, 251)
≤ 1.533, p’s ≥ 0.127).

3.7. TC-PGS Does Not Associate with Increased Risk of Becoming Aβ(+)

The association between TC-PGS and risk of AD, defined as being Aβ(+), was evalu-
ated in all three target cohorts (Table 2).

Individuals in ADNI and ROSMAP were categorized based on the presence of Aβ
pathology in the brain as either Aβ(−) or Aβ(+) (see Method section for classification).
We did not find any significant effect of TC-PGS on the risk of becoming Aβ(+) in neither
PREVENT-AD, ADNI, nor ROSMAP. Stratification by statin used and sex did not lead to
any significant association either.
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Figure 3. Associations of TC-PGS with biomarkers of amyloid pathology. Aβ pathology biomarkers
were plotted against TC-PGS and assessed by multiple linear regressions. (A) PREVENT-AD CSF
levels of Aβ-42 and its ratio with Aβ-40. (B) PREVENT-AD amyloid brain levels, as assessed by PET
after stratification by Aβ(+) status (SUVR > 1.37). Due to the small sample size of Aβ(+) individuals
(n = 18), only the main effect of TC-PGS was investigated. (C) ADNI CSF levels of Aβ-42. Shaded
areas indicate 95% confidence intervals. Abbreviations: Aβ, amyloid-β; CSF, cerebrospinal fluid; PET,
positron emission tomography; SUVR, standardized uptake value ratio; TC-PGS, total cholesterol
polygenic score.

Table 2. TC-PGS effect on amyloid positivity status.

PREVENT-AD ADNI ROSMAP

TC-PGS terms ORs p-Value ORs p-Value ORs p-Value

TC-PGS 0.50 (0.07–3.24) 0.25 0.82 (0.40–1.66) 0.58 0.95 (0.66–1.37) 0.77
Statin use*TC-PGS NA NA 1.68 (0.31–1.91) 0.27 NA NA

Sex*TC-PGS 3.64 (0.42–39.4) 0.25 1.08 (0.20–1.25) 0.87 0.87 (0.56-1.35) 0.54
Statin use*Sex* TC-PGS NA NA 0.60 (0.05–0.53) 0.41 NA NA

ORs for interaction terms refer to statin treated, females with an increase in 1 SD of TC-PGS. NA indicates that interaction was not
investigated due to insufficient sample size. 95% confidence intervals shown within brackets (). Abbreviations: Aβ(+), amyloid-β positivity
as assessed by CSF p-Tau/Aβ-42 ratio (≥ 0.028); CI, cognitively impaired (only Aβ(+) individuals); OR, odds ratio; TC-PGS, total cholesterol
polygenic score.
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Figure 4. Associations of TC-PGS with biomarkers of TAU pathology. TAU pathology biomarkers
plotted against TC-PGS and assessed by multiple linear regressions. (A) PREVENT-AD CSF levels
of p-Tau and its ratio with t-Tau levels. (B) PREVENT-AD TAU brain levels, as assessed by PET.
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total TAU; positron emission tomography; SUVR, standardized uptake value ratio; TC-PGS, total
cholesterol polygenic score.
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3.8. TC-PGS Does Not Associate with Cognition in Aβ(+) Individuals

Finally, we evaluated whether the TC-PGS is associated with the risk of becoming
cognitively impaired in ADNI and ROSMAP (Table 3). For this analysis, we used the
subset of individuals that were Aβ(+) and defined cognitive impairment (CI) as having any
diagnosis of CI (e.g., including mild cognitive impairment (MCI), AD, and other dementias)
at the last recorded visit. In neither ADNI nor ROSMAP could we detect any significant
association between the TC-PGS and risk of becoming cognitively impaired. Stratification
by sex does not lead to any significant associations. We also evaluated whether the TC-PGS
had any effect on the conversion rate (ADNI, Figure 6A) or the age of onset (ROSMAP,
Figure 6B). Aβ(+) individuals, either non-CI or with an MCI diagnosis at baseline, were
selected as a subset of ADNI. The “event” was defined as receiving a clinical diagnosis of
AD. Survival analysis revealed no difference between TC-PGS tertiles on conversion rate in
ADNI (χ2(2) = 1.1, p = 0.6). In ROSMAP, we examined the association between TC-PGS
tertiles and age at onset of a clinical diagnosis of possible or probable AD; however, we
found no difference between the tertile groups (χ2(2) = 0.2, p = 0.9).

Table 3. TC-PGS effect on cognitive impairment.

ADNI ROSMAP

TC-PGS Terms ORs p-Value ORs p-Value

TC-PGS 1.08 (0.44–2.69) 0.86 0.76 (0.43–1.33) 0.34
Sex*TC-PGS 1.18 (0.38–3.89) 0.78 1.40 (0.76–2.61) 0.28

ORs for interaction terms refer to statin treated, females with an increase in 1 SD of TC-PGS. 95% confidence
intervals shown within brackets (). Abbreviations: Aβ(+), amyloid-β positivity as assessed by CSF p-Tau/Aβ-42
ratio (≥0.028); CI, cognitively impaired (only Aβ(+) individuals); OR, odds ratio; TC-PGS, total cholesterol
polygenic score.
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Figure 6. No effect of TC-PGS on AD conversion rate and age of onset. Kaplan–Meier survival curves displaying conversion
rates to a clinical diagnosis of AD depending on TC-PGS tertiles in Aβ(+) individuals. (A) Conversion rate from healthy or
MCI to AD as assessed by months after baseline visit in ADNI. (B) Conversion rate from healthy or MCI to AD as assessed
by age in ROSMAP, stratified for sex. Abbreviations: AD, Alzheimer’s disease; TC-PGS, total cholesterol polygenic score.
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4. Discussion
4.1. TC-PGS and TC Levels

In this study, we have created a TC-PGS that associates with blood TC levels in two
AD-related cohorts. We show that the variability explained by the score depends on the
cohort, selection of SNPs to include in the score, statin use, and sex. We used clumping
and p-value thresholding as a method for pruning SNPs to include in the scores, and
thus, evaluated a number of p-value thresholds in both PREVENT-AD and in ADNI. We
found that the score that explained most of the variance varied between the two cohorts
and depended on statin use and sex stratification. For instance, a p-value threshold of
1 × 10−6 performed best in PREVENT-AD, while a threshold of 0.01 performed best in
ADNI in the non-stratified analyses. In addition, the scores in general performed better in
PREVENT-AD than in ADNI (Figure 1). Further, stratification on both statin use and sex
had a remarkable effect on the scores’ performance in PREVENT-AD, and less so in ADNI.
For example, in PREVENT-AD, the TC-PGSs had significant associations in statin-free
females, with no significant associations in statin-treated individuals and males.

Similarly, examining the predictive ability of the TC-PGS on hypercholesterolemia
revealed a significant improvement in PREVENT-AD females after the addition of the
TC-PGS to the model, increasing AUC from 0.708 to 0.805 but not in males (Figure 2). In
ADNI, we detected similar trends for improved AUCs in females and males, but this did
not reach significance (p’s > 0.08).

The discrepancies between cohorts could possibly be due to the differences between
PREVENT-AD and ADNI (Table 1) that differ in the proportion of females, APOE-ε4 carriers
and statin users, as well as age. With sex and statin stratifications, we see that results do
become more similar, further supporting the importance of taking these factors into account.
Another factor that could affect the associations is that cholesterol measurements were taken
after fasting in ADNI, whereas in PREVENT-AD, non-fasted samples were used, although
studies have shown that TC levels are little influenced by fasting conditions [60,61].

The APOE gene locus is one of the most important for TC levels. The top SNP in
the results from Willer et al. [24] is indeed rs7412—the SNP, together with rs429358, that
determines the APOE-ε4 genotype. Its C allele combines to either result in the ε3 or ε4
alleles (as opposed to the ε2 allele) and associates with increased TC levels (β = 0.374,
p = 1.560 × 10−283). Rs429358 further determines the ε4 allele and is not present in the
summary data. Nevertheless, rs429358 has been shown to associate with TC levels in other
big GWAS’s [62,63] such that the C allele, which results in the ε4 allele, associates with
increased TC levels.

It should be noted that the two cohorts also differ in terms of age; ADNI being
on average 10 years older than PREVENT-AD. TC levels increase from early life over
midlife to late-life [64], however, it appears to be decreasing with age in older adults
above 70 years [18,65]. This altered metabolism of cholesterol with age possibly involves
different sets of genes and could thus explain why the TC-PGS behave differently in the
two differently aged cohorts. This hypothesis, however, need to be further investigated
using either longitudinal studies or cross-sectional studies covering a bigger range of ages.
Considering that increased midlife levels of TC [3–5,8] are associated with increased risk of
AD, it is interesting that our TC-PGS performs better in PREVENT-AD, which is closer to
midlife than ADNI, thus suggesting it is better capturing midlife than late-life cholesterol
levels.

The interaction between age and sex is of interest. For example, menopause in
women is associated with increased TC levels and risk of cardiovascular disease [66,67]
and hormone replacement therapy has been shown to decrease TC levels [68]. PREVENT-
AD are younger and have a higher percentage of females compared to ADNI, and one
could thus hypothesize those discrepancies in TC metabolism could also be influenced by
discrepancies in the proportions of individuals that underwent menopause and treatment
thereof.
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Finally, compared to the study by Proitsi [28], our results show that the variance
explained in blood TC levels by a TC-PGS can be vastly improved (3.6% in [28] vs. 18.2%
for p-value cut-off 1 × 10−6 in statin free females in PREVENT-AD) by considering statin
use and sex in the model.

4.2. TC-PGS and AD

Contrary to our significant findings between a TC-PGS and TC blood levels, the TC-
PGS showed no associations with any biomarkers of AD pathologies (Figures 3 and 4),
neurodegeneration (Figure 5), or cognition (Figure 6, Table 3). Similarly, the TC-PGS did
not associate with the risk of becoming Aβ(+) (Table 2), whether stratified by sex or statin
use.

The relationship between vascular factors and AD biomarkers was recently assessed
in PREVENT-AD and showed that vascular factors, including TC levels, associate with
increased Aβ pathology, but only in individuals free of vascular medication, which include
statins [13]. In contrast to the current study, where individuals were grouped based on
statin use only, Köbe et al. included other medications relevant to cardiovascular disease
(drugs against hypercholesterinemia and hypertension). Although samples size was an
issue in PREVENT-AD, in ADNI, we had a sufficient sample size to include statin and
sex use as interaction terms. Nevertheless, we could not find evidence for any association
between the TC-PGS and AD biomarkers in both cohorts, maybe indicating that further
vascular medications, rather than just statin use, need to be formally considered.

It is also possible that there is an additive effect of vascular risk factors such that the
TC-PGS alone is not sufficient to have an effect on AD. Kivipelto et al. showed in multiple
studies that there is an additive effect of TC levels, blood pressure, and APOE-ε4 [6–8],
leading to the development of the cardiovascular risk factors, aging, and dementia (CAIDE)
score [69]. This score takes into account age, sex, education, systolic blood pressure, body
mass index, cholesterol, physical activity, and APOE-ε4 status and has been validated
as a predictor for AD [70]. Similarly, vascular burden scores, taking into account factors
such as hyperlipidemia, diabetes, and hypertension, are associated with impaired exec-
utive function and lower the threshold of amyloid burden needed to result in cognitive
impairment [71]. This raises the important issue that concomitant vascular pathology may
have severely confounded previous studies that established the link between mid-life total
cholesterol and late-life AD risk. A note of interest, low education is associated with worse
lipid profiles in women and better lipid profiles in men, the subgroup most susceptive to
developing AD with aging. The percentages of intra-individual biological variability of
total cholesterol, LDL and HDL do not exceed 9% in the normal population [72]. Com-
plementary studies are now required to help to better understand the possible interplay
between genetics and education pathways as they may both modulate AD risk in the
elderly population where socioeconomic inequalities are quite common.

As mentioned above, APOE is important both for TC levels and AD risk. In this study
design, we decided to keep the APOE gene locus in the TC-PGS but to correct for APOE-ε4
status in each regression model. Thus, the associations between the TC-PGS and TC levels
are in addition to any effect of APOE-ε4 status. Similarly, the lack of association between
TC-PGS and AD is after correcting for APOE-ε4 status. It is thus possible that the increased
risk of AD seen in APOE-ε4 carriers is actually mediated in large part by independent
processes found both in the periphery and in the CNS. For example, our group reported a
surprisingly strong association between CSF concentrations of apolipoprotein B (apoB) and
phospho(181)-tau in the pre-symptomatic phase of the disease in elderly subjects who are
“at-risk” of AD because of a parental history. ApoB-containing lipoproteins such as LDL
and VLDL have been associated with vascular or mixed dementia [73] in contrast to total
cholesterol, which is the one clearly associated with AD risk. The observed apoB/phospho-
tau association in pre-symptomatic AD is markedly modulated by the presence of the
APOE-ε4 allele but not by the passage of peripheral apoB into the CNS [74]; supporting
the notion that the total cholesterol could act more as a surrogate biomarker for APOE-ε4
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mediated effects than a direct player in the pathophysiological process. This would be
consistent with the above results showing that genetic variants, other than the genetic
variants resulting in the APOE-ε4 isoform, strongly correlate with TC levels but fail to
associate with AD pathology.

5. Conclusions

In summary, we have created a TC-PGS that associates with TC levels and significantly
improves the prediction of hypercholesterolemia, specifically in statin-free females with
European ancestry. We could, however, not prove any significant associations with AD,
neither on the neuropathological underpinnings nor on cognition. It is possible that
explaining ~18% of the variance in blood TC levels is still not enough to find significant
associations with AD. For example, while it has previously been shown that TC levels
are associated with Aβ pathology in PREVENT-AD [13], the TC-PGS was not in the
same cohort, which would suggest that we would possibly need a bigger sample size.
Furthermore, considering the fact that there is an additive effect of vascular risk factors on
AD, it is still possible that the TC-PGS could have an effect on AD in individuals at higher
cardiovascular risk (e.g., APOE-ε4 carriers). Further research is warranted to establish the
role of a TC-PGS in AD.
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